Bacterial Synergism in Lignocellulose Biomass Degradation – Complementary Roles of Degraders As Influenced by Complexity of the Carbon Source

نویسندگان

  • Larisa Cortes-Tolalpa
  • Joana F. Salles
  • Jan Dirk van Elsas
چکیده

Lignocellulosic biomass (LCB) is an attractive source of carbon for the production of sugars and other chemicals. Due to its inherent complexity and heterogeneity, efficient biodegradation requires the actions of different types of hydrolytic enzymes. In nature, complex microbial communities that work efficiently and often synergistically accomplish degradation. Studying such synergisms in LCB degradation is fundamental for the establishment of an optimal biological degradation process. Here, we examine the wheat straw degradation potential of synthetic microbial consortia composed of bacteria and fungi. Growth of, and enzyme secretion by, monocultures of degrader strains were studied in aerobic cultures using wheat straw as the sole carbon and energy source. To investigate synergism, co-cultures were constructed from selected strains and their performance was tested in comparison with the respective monocultures. In monoculture, each organism - with a typical enzymatic profile - was found to mainly consume the cellulose part of the substrate. One strain, Flavobacterium ginsengisoli so9, displayed an extremely high degradation capacity, as measured by its secreted enzymes. Among 13 different co-cultures, five presented synergisms. These included four bacterial bicultures and one bacterial-fungal triculture. The highest level of synergism was found in a Citrobacter freundii/Sphingobacterium multivorum biculture, which revealed an 18.2-fold increase of the produced biomass. As compared to both monocultures, this bacterial pair showed significantly increased enzymatic activities, in particular of cellobiohydrolases, mannosidases, and xylosidases. Moreover, the synergism was unique to growth on wheat straw, as it was completely absent in glucose-grown bicultures. Spent supernatants of either of the two partners were found to stimulate the growth on wheat straw of the counterpart organism, in a directional manner. Thus, the basis of the LCB-specific synergism might lie in the specific release of compounds or agents by S. multivorum w15 that promote the activity of C. freundii so4 and vice versa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: Relative contributions of procaryotes and eucaryotes’

The relative contributions of procaryotes and eucaryotes to the degradation of the lignin and polysaccharide components of lignocellulosic detritus in two marine and two freshwater wetland ecosystems were determined. Two independent methods-physical separation of bacteria from fungi and other eucaryotes by size fractionation, and antibiotic treatments-were used to estimate procaryotic and eucar...

متن کامل

Perspective of Microbial Species Used in Lignocelluloses Bioconversion

Lignocellulosic wastes are abundant, renewable and inexpensive sources of energy. This wastes contains large amount of residual plant biomass which is non edible material obtained from plant cell walls. Biomass could be obtained from crop, domestic liquid fuel, municipal solid waste and agricultural residuals. In nature, cellulose, hemicellulose and lignin are major component of plant biomass t...

متن کامل

Occurrence of Priming in the Degradation of Lignocellulose in Marine Sediments.

More than 50% of terrestrially-derived organic carbon (terrOC) flux from the continents to the ocean is remineralised in the coastal zone despite its perceived high refractivity. The efficient degradation of terrOC in the marine environment could be fuelled by labile marine-derived material, a phenomenon known as "priming effect", but experimental data to confirm this mechanism are lacking. We ...

متن کامل

Degradation of Hydrocarbons and Lignin-like compounds by Alcaligenes sp. strain 3k isolated from Ilorin

The primary goal of this study was to isolate hydrocarbon-degrading organisms and assess their ability to bioremediate petroleum-contaminated soil and water. Nigeria is one of the major oil producing countries and petroleum contamination is widespread in agricultural soil. Alcaligenes sp. strain 3k was isolated from a kerosene-polluted soil in Ilorin, Nigeria. We also assessed its ability to de...

متن کامل

Degradation of Hydrocarbons and Lignin-like compounds by Alcaligenes sp. strain 3k isolated from Ilorin

The primary goal of this study was to isolate hydrocarbon-degrading organisms and assess their ability to bioremediate petroleum-contaminated soil and water. Nigeria is one of the major oil producing countries and petroleum contamination is widespread in agricultural soil. Alcaligenes sp. strain 3k was isolated from a kerosene-polluted soil in Ilorin, Nigeria. We also assessed its ability to de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017